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* Four dimensional ' = 2 superconformal field theories (SCFT’s) form a distinguished class of well
studied string compactifications.

* Field theoretic techniques offer a great deal of analytic control to study these theories. Indeed, in
the recent past, there has been a variety of systematic attempts to explore the space of 4d ' =
2 SCFT’s by studying the geometry as well as algebraic properties of the moduli space.

[Snowmass White Paper on SCFT’s: Argyres, Heckman, Intrilligator, Martone 2022]

* The geometric approach (applied specifically to the Coulomb Branch) has resulted in an
apparently complete classification of such SCFT’s at rank 1. [Argyres, Martone, Lotito, Lu 2015-17]

* Higher rank theories have so far resisted the challenge of classification. Yet, there is a developing
understanding that the space of lower rank theories plays a critical role in exploring the moduli
space structure at successively higher ranks and the moduli space techniques can shed light on
various physical properties of the theories constructed via other methods.

[Argyres, Long, Martone, 2016; Martone, 2020; Argyres, Martone 2020]
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* There exist a variety of ways in which to obtain V' = 2 SCFT’s starting with string theory,
M-theory, or F-theory. [Katz, Klemm, Vafa, 1996]

* In this talk, we focus on V' = 2 theories obtained by compactifying Type IIB string theory
on a Cala bi‘YaU 3‘f0|d [Shapere, Vafa 1999, Xie, Yau 2015; Giacomelli 2017]

e If the CY; is a hypersurface in either C*or C3XC* with an isolated sinéularity, it is rather
easy to extract quite a bit of physical information about the V' = 2 SCFT directly from

the geometry (using the Jacobi algebra).

* Given a simply laced Lie algebra{ and a get of integers {b, k}, one can engineer two
different types of theories: J? (k) and DZ (J).
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For a 4d theory T, it is fairly simple to obtain in an algorithmic manner (using the
Jacobi algebra of the IHS) the following: (T, c, TcB TF) {ALCB}

[Giacomelli, 2017]]

i:1,..,r)

 However, J is only part of the full flavor symmetry algebra, and geometric
engineering only provides us 7.
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* This includes understanding the stratification of the Higgs branch, which for

us is essentially a way of encoding the partial Higgsing pattern of the
theory in d Hasse diagram. [Bourget, Cabrera, Grimminger, Hanany, Sperling, Zajac, Zhong, 2020]

* For our purpose, it is sufficient to study partial Higgsing along the minilmal

nilpotent orbit in order to determine the flavor symmetry. (This relies on the
assumption that the Higgs branch chiral ring contains only flavor multiplets.) (kaidi, Martone 2021]
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Toolkit

e Central charge formulae: generalization of Shapere-Tachikawa formulae,
obtained by studying the U(1),- anomaly in a topologically twisted SCFT

[Martone, 2020]

* Flavor level doubling rule [Martone, 2020]

 Anomaly matching relation for the ¢ central charge of the theory obtained
via partial Higgsing to that of the parent theory

[Giacomelli, Meneghelli, Peelaers, 2020; Distler, Martone, to appear; Beem, Martone, Meneghelli, Peelears, Rastelli, to appear]

e Sugawara central charge condition for the associated 2d VOA

[Beem, Peelaers, Rastelli, van Rees, 2016]
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Application

* Let’s apply these tools to some concrete examples.

* At rank 2, even though the classification program is nowhere complete, a
catalogue of nearly all the known rank 2 theories is available and the
stratification of the corresponding moduli spaces has been worked out.

[Martone, 2021]

* We focus here on rank higher than 2, where our understanding of the
moduli spaces is still developing.

* Using geometric engineering, one can immediately construct higher rank
theories with the J, b, k as inputs and obtain aforementioned physical data.

* A high fraction of these examples turn out to be Argyres — Douglas theories.
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A rank-3 example: D5 (Ax)

Defining properties:

12¢c = 48
3 5 7
Ae 2.2,
T'f = 6
] = As
From which we also have:
24 a = 84
d]HI = 12
kf = 7

Guess the flavor symmetry to be Ag = su(7).

First check: look for a rank-2 IR theory after
partial Higgsing along the minimal nilpotent orbit.

This rank-2 theory must have the following
scaling dimensions:
3 5
Ace 5}
as well as 12c¢ and dy so as to satisfy the
Anomaly matching central charge formula.

Indeed such a theory exists: D3 (4;) aka D, (su(5)).
It has12c = 24, dy = 6, = su(5)s:.

Also, since dim(su(7)) =48 and h” = 7,
the Sugawara central charge matches our prediction
of flavor symmetry and level:

C2d,Sugawara = —48 = —12¢4q4
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Another rank-3 theory: D5(4,)

Defining properties:

12¢c = 27
4 5 7
Aie {5303)
T'f:6
] =4,
24 a = 50
dH—H,HB:4
14
kf:?

f = su(3)1axu(l)

D3(Ay)

This theory has:
12c = 14,
f = su(2)10xu(1),
3

d]HI,HB = 2
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* There is a correspondence between the Schur sector of 4d N' = 2 SCFT’s and vertex
operator algebras (VOA’s). (Not a review!)

Roughly speaking, the sector of operators in the 4d SCFT chiral rings called Schur operators
can be used to construct a VOA. If there is global symmetry in the SCFT with a given flavor
level, then it also manifests itself in the VOA via flavor currents.

[Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees, 2015; Beem, Peelaers, Rastelli, van Rees, 2016]
Kiad
2
* We conjecture and provide evidence that the VOA’s associated to these theories are
finite extensions of Affine Kac-Moody (AKM) algebras.

* Theimportant relations are:  cq= —12¢44, kizq = —

* We also check the consistency of our partial Higgsing results by recovering Schur indices
of the daughter theories by applying an index Higgsing procedure to the parent indices.

But that is a Story for another time! [Gaiotto, Rastelli, Razamat, 2013; Nishinaka, Sasa, Zhu, 2019; Beem, Peelaers,
Rastelli, van Rees, 2016; Kaidi, Martone, 2021]
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What about higher rank theories?

* Indeed, the techniques can be applied seamlessly provided that the data for
corresponding class of lower rank theories is known.
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What about higher rank theories?

* Indeed, the techniques can be applied seamlessly provided that the data for
corresponding class of lower rank theories is known.
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Conclusion and some open questions

* We showed that there exists a way of taking a geometric engineered rank-r
theory for an arbitrary r, and deduce its physical properties such as the flavor
structure and the partial Higgsing pattern by use of known properties of lower

rank theories.

* There exist several other classes of geometric engineering SCFT’s. Can we carry
out this procedure for all the different classes in order to supplement the known
physical properties of these theories and create a catalogue of known higher rank
theories? [Ceceotti, Del Zotto, 2013; Wang, Xie, 2016; etc.]

e Coulomb branch stratification: can we get a handle on the singularity structure of
the Coulomb branch of the class of theories presented today?



Thank youl!



