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Introduc)on
• Four dimensional𝒩 = 2 superconformal field theories (SCFT’s) form a dis:nguished class of well 

studied string compac:fica:ons.

• Field theore:c techniques offer a great deal of analy:c control to study these theories. Indeed, in 
the recent past, there has been a variety of systema:c aEempts to explore the space of 4d𝒩 =
2 SCFT’s by studying the geometry as well as algebraic proper:es of the moduli space.

• The geometric approach (applied specifically to the Coulomb Branch) has resulted in an 
apparently complete classifica:on of such SCFT’s at rank 1.

• Higher rank theories have so far resisted the challenge of classifica:on. Yet, there is a developing 
understanding that the space of lower rank theories plays a cri:cal role in exploring the moduli 
space structure at successively higher ranks and the moduli space techniques can shed light on 
various physical proper:es of the theories constructed via other methods.
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Geometric Engineering

• There exist a variety of ways in which to obtain 𝒩 = 2 SCFT’s star7ng with string theory, 
M-theory, or F-theory.

• In this talk, we focus on 𝒩 = 2 theories obtained by compac7fying Type IIB string theory 
on a Calabi-Yau 3-fold.

• If the 𝐶𝑌! is a hypersurface in either ℂ"or ℂ!×ℂ∗ with an isolated singularity, it is rather 
easy to extract quite a bit of physical informa7on about the 𝒩 = 2 SCFT directly from 
the geometry (using the Jacobi algebra).

• Given a simply laced Lie algebra 𝐽 and a set of integers {𝑏, 𝑘}, one can engineer two 
different types of theories: 𝐽$ 𝑘 and 𝐷%$ 𝐽 . 
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Geometric Engineering

• Nota%on:
• 𝐽! 𝑘 theories: engineered from IHS in ℂ"
• 𝐷#! 𝐽 theories: engineered from IHS in ℂ$×ℂ∗

• For a given ADE algebra, the choices of b are
restricted to the integers shown in the table.
• Here, J is part of the global symmetry of the corresponding 4d theory.
• Which other physical informa%on does geometry provide us with?
• For a 4d theory 𝒯, it is fairly simple to obtain in an algorithmic manner (using the 

Jacobi algebra of the IHS) the following: (𝒯, 𝑐, 𝑟!", 𝑟#, Δ$,!" $&',..,))
• However, J is only part of the full flavor symmetry algebra, and geometric 

engineering only provides us 𝑟#.
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Flavor structure

• Main goal: to understand the full flavor symmetry of a theory based 
only on data that can be extracted from geometric engineering.

• This includes understanding the stra;fica;on of the Higgs branch, 
which for us is essen;ally a way of encoding the par;al Higgsing 
paAern of the theory in a Hasse diagram.

• For our purpose, it is sufficient to study par;al Higgsing along the 
minilmal nilpotent orbit in order to determine the flavor symmetry.
(This relies on the assump7on that the Higgs branch chiral ring contains only flavor 
mul7plets.)
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Toolkit
• Central charge formulae: generaliza;on of Shapere-Tachikawa

formulae, obtained by studying the 𝑈 1 + anomaly in a topologically 
twisted SCFT
• Flavor level doubling rule
• Anomaly matching rela;on for the 𝑐 central charge of the theory 

obtained via par;al Higgsing to that of the parent theory
• Sugawara central charge condi;on for the associated 2d VOA
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24𝑎 = 5𝑟 + ℎ + 6(Σ&'() Δ& − 𝑟) + Σ*+, Δ*
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Δ*

12𝑐 = 2𝑟 + ℎ + Σ*+, Δ*
-*./ 12𝑐* − ℎ* − 2

Δ*

This immediately gives the quaternionic dimension of the Higgs branch:

𝑑ℍ,23 = 24 𝑐 − 𝑎
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𝑐"#,%&'()(!( =%
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𝑘"# dim𝐺*
𝑘"# + ℎ* ̌

≅ −12 𝑐+#



Applica)on

• Let’s apply these tools to some concrete examples.
• At rank 2, even though the classifica;on program is nowhere 

complete, a catalogue of nearly all the known rank 2 theories is 
available and the stra;fica;on of the corresponding moduli spaces 
has been worked out.
• We focus here on rank higher than 2, where our understanding of the 

moduli spaces is s;ll developing.
• Using geometric engineering, one can immediately construct higher 

rank theories with the 𝐽, 𝑏, 𝑘 as inputs and obtain aforemen;oned 
physical data. 
• A high frac%on of these examples turn out to be Argyres – Douglas theories.
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𝑘𝔣 = 7

Guess the flavor symmetry to be 𝐴4 = 𝔰𝔲(7).

First check: look for the rank-2 IR theory aSer 
par:al Higgsing along the minimal nilpotent orbit.

This rank-2 theory must have the following
scaling dimensions:

Δ! 𝜖
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#
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as well as 12𝑐 and 𝑑ℍ so as to sa:sfy the
gHW central charge formula.
Indeed such a theory exists: 𝐷!"(𝐴") aka 𝐷! 𝔰𝔲 5 .

It has 12𝑐 = 24, 𝑑ℍ = 6, 𝔣 = 𝔰𝔲 5 ".

Also, since dim( 𝔰𝔲 7 ) = 48 and h ̌ = 7, 
the Sugawara central charge matches our predic:on 
of flavor symmetry and level:

𝑐#$,&'()*)+) = −48 = −12𝑐,$
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Why impose the Sugawara condi)on?

• There is a correspondence between the Schur sector of 4d𝒩 = 2 SCFT’s and 
vertex operator algebras (VOA’s). (Not a review!)
• Roughly speaking, the sector of operators in the 4d SCFT chiral rings called Schur 

operators can be used to construct a VOA. If there is global symmetry in the SCFT 
with a given flavor level, then it also manifests itself in the VOA via flavor 
currents.

• The important rela:ons are:    𝑐56= −12𝑐"6, 𝑘𝔣,56 = − #𝔣,)*
5

.

• We conjecture and provide evidence that the VOA’s associated to these theories 
are finite extensions of Affine Kac-Moody (AKM) algebras.
• We also check the consistency of our par%al Higgsing results by recovering Schur 

indices of the daughter theories by applying an index Higgsing procedure to the 
parent indices. But that is a story for another %me!
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Conclusion and open ques)ons

• We showed that there exists a way of taking a geometric engineered rank-r 
theory for an arbitrary r, and deduce its physical proper%es such as the flavor 
structure and the par%al Higgsing pa\ern by use of known proper%es of lower 
rank theories.
• There are several other ways of geometric engineered SCFT’s. Can we carry out 

this procedure for all the different classes in order to supplement the known 
physical proper%es of these theories and create a catalogue of known higher rank 
theories?
• Coulomb branch stra%fica%on: can we get a handle on the singularity structure of 

the Coulomb branch of the class of theories presented today?
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Thank you!


